Molecular imaging with \(^{68}\text{Ga-PSMA PET/CT}\) in high grade glioma: A biomarker for tumour neo-angiogenesis

Sharjeel Usmani\(^{1,2}\), Khulood Al Riyami\(^{3}\), Shah P Numani\(^{4}\), Syed Furqan Hashmi\(^{5}\), Anjali Jain\(^{6}\), Rashid al Sukaiti\(^{7}\), Najeeb Ahmed\(^{8}\), Muhammad Shahzad Shamim\(^{9}\)

Abstract

There are several promising radiotracers used for both staging and restaging of primary and recurrent brain tumours based on various mechanisms of tracer localization in tumour cells. \(^{68}\text{Ga-PSMA PET}\) has extremely low background uptake in normal brain tissue and consequently high tumour-to-brain ratio making it a promising imaging radiotracer for gliomas. \(^{68}\text{Ga-PSMA}\) demonstrates utility in evaluating high grade glioma during both initial workup or when suspecting recurrence. Herein the authors evaluate the role of this imaging modality and the potential future it holds in the management of high grade gliomas.

Keywords: \(^{68}\text{Ga-PSMA};\) PET/CT; brain tumors; PET/CT; gliomas; Glioblastoma Multiforme

Introduction

MRI is the standard method of imaging in the evaluation of gliomas, yet it is often challenging to differentiate between tumour recurrence and radionecrosis. Compared with MRI, PET imaging provides functional information and may add diagnostic value in detecting new lesions and differentiating tumour progression from post-treatment change. \(^{18}\text{F-FDG}\) is the most often utilized radiotracer in oncology because cancer cells have a higher metabolism of glucose. However, \(^{18}\text{F-FDG PET/CT}\) has a limited role in the detection of brain tumours due to high uptake in normal brain parenchymal tissue.\(^{1}\) Recent literature shows promising diagnostic value of \(^{68}\text{Ga-PSMA PET/CT}\) in evaluation of glioma due to absence of physiological uptake of \(^{68}\text{Ga-PSMA}\) in the normal brain parenchyma that results in high tumour to background ratio (TBR) values leading to better visualization of glial neoplasms.\(^{2}\)

Review of Evidence

Prostate-specific membrane antigen (PSMA) is a type-2 transmembrane glycoprotein and is highly expressed in prostate cancer and is a promising tracer for both staging and detection of biochemical recurrence in prostate cancer.\(^{3}\) \(^{68}\text{Ga-PSMA}\) uptake has also been reported in other solid malignant tumours including glioma, lung, breast cancer and renal cell carcinoma.\(^{4}\) PSMA is expressed in the endothelium of tumour-associated neovasculature of various solid malignancies possibly due to tumour-associated angiogenic factors and endothelial cell sprouting including gliomas.\(^{5,6}\) PSMA expression has not been reported in normal vasculature.\(^{7}\) PSMA PET/CT has a pooled sensitivity of 86.5% (95% CI: 73–94%) and specificity 89.2% (95% CI: 71–96.5%) for differentiating high grade and low grade gliomas.\(^{11}\) PSMA PET imaging could be helpful in the detection and localization of gliomas, particularly those with high PSMA expression. It can be used to characterize PSMA expression in gliomas and the degree of \(^{68}\text{Ga-PSMA}\) uptake in gliomas seems to correlate well with tumour grade and proliferation index (Ki-67).\(^{7}\) Verma et al., showed that \(^{68}\text{Ga-PSMA PET}\) might help in discriminating high grade gliomas from low grade, on the basis of higher SUV max, and MIB-1 PI tumour-to-background ratio.\(^{10}\) PSMA PET indices like SUV max/mean also seem to show correlation with immunohistochemical (IHC) analysis.\(^{8}\)

85.7% for high grade tumours.\(^{12}\) Bertagna et al., in a literature review also suggests that radiolabeled PSMA imaging can be useful in analyzing gliomas and glioblastomas, although the authors recommended large-scale prospective studies are needed to clarify the real clinical and diagnostic role of it.\(^{13}\)
68Ga-PSMA PET/CT may also play an important role in the management of recurrent gliomas. The high tumour-to-brain ratio and exceptionally low background uptake in normal brain tissue makes 68Ga-PSMA PET/CT a promising modality for detection of recurrent disease in high grade glioma patients. 68Ga-PSMA PET is especially beneficial in diagnosing early tumour recurrence as it has been shown to be poorly expressed in treatment-related changes such as radiation necrosis. Kumar et al., recently investigated 68Ga-PSMA in recurrent of high grade gliomas and reported 100% concordance between MRI and PET for patient and lesion-wise detection.

68Ga PSMA PET scans can also be useful in planning radiotherapy for gliomas by identifying the extent of PSMA expression in the tumour. This approach may help customize treatment strategies to better target PSMA expressing cells. A recent study studied 68Ga PSMA PET scans in glial tumours for radiotherapy planning and found that it can accurately outline tumour boundaries and could be useful in defining target volumes particularly during re-irradiation of recurrent tumours.

It is crucial to also consider the potential pitfalls and limitations of this imaging modality. Some studies have indicated that PSMA expression in high grade gliomas can be variable and non-specific, leading to false-positive or false-negative results. This can result in an underestimation or incomplete visualization of tumour extent. Furthermore, pseudoprogression can also be observed on 68Ga-PSMA PET/CT in certain cases of high grade gliomas treated with chemoradiotherapy.

Conclusions

68Ga-PSMA PET appears to be a promising imaging tool for high grade glioma assessment and prognosis. 68Ga-PSMA expression in glioma can also potentially pave the way for PSMA-targeted radioligand therapies. However, the evidence supporting its use is still limited, and larger prospective studies are needed to establish its clinical utility and accuracy.
References

