Abstract
Focal segmental glomerulosclerosis (FSGS) can cause proteinuria and loss of kidney function, leading to end-stage renal disease (ESRD). Podocyte injury is the central pathophysiologic mechanism of hereditary FSGS. Numerous mutations in genes encoding or affecting the transcriptional regulation of podocyte cell compartments have been detected in patients with genetic FSGS. Herein, we report a rare case of familial FSGS with an autosomal dominant WT1 mutation. A 63-year-old man developed proteinuria; his reading showed over 1g protein/day. A pathological diagnosis of FSGS was made after renal biopsy. His elder brother and a 36-year-old son also had ESRD. Heterozygous variant of WT1 (NM_024426.4) c.1373G>A (p.Arg458Gln) missense was detected in the patient and his son, by whole-exome sequencing. Although genetic screening is not a part of routine practice, it should be performed in such cases to aid appropriate treatment options selecting, revealing extrarenal symptoms, and family planning.

Keywords: Focal segmental glomerulosclerosis, WT1 gene, Missense mutation.

DOI: https://doi.org/10.47391/JPMA.8251

Introduction
Focal segmental glomerulosclerosis (FSGS) is characterised by focal scarring of the glomerular capillary tuft and podocyte injury. The prevalence of biopsy-proven FSGS varies according to geographical areas, race, age, accessibility to health care services, and indication for renal biopsy. The causes of FSGS are categorised into primary, secondary, genetic, and undetermined.1

Podocyte injury is the central pathophysiological mechanism in hereditary FSGS.2 The WT1 transcription factor gene (WT1) plays a critical role in genitourinary development, and its mutations are involved in several diseases that involve the kidneys and genitals.3 Recent studies have revealed that WT1 deletion is associated with podocytopathy.4,5 Herein, we report a case of familial FSGS with an autosomal dominant WT1 mutation and provide a review of the literature.

Case Report
A 63-year-old man was referred to the nephrology department of CHA Bundang Hospital in Republic of Korea, on February 22, 2018, due to a 10-year history of proteinuria. Additionally, he had a 20-year history of hypertension and a two-month history of gout. Physical examination revealed a maximum blood pressure of 160/100 mmHg and a body mass index of 24.8 kg/m². A urinary dipstick test showed urine protein 2+ and the spot urine protein/creatinine ratio was 1.91 g/g (normal below 0.2 g/g). Serum blood urea nitrogen, creatinine, and albumin levels were 15.7 mg/dL (normal 5-20 mg/dL), 1.0 mg/dL (normal 0.7-1.2 mg/dL), and 3.6 g/dL (normal 3.5-5.2 g/dL), respectively. An abdominopelvic computed tomography scan showed that both kidneys were normal in size (left, 12.5 cm; right, 12.3 cm). He was asymptomatic, with no extrarenal manifestations.

The kidney biopsy samples revealed the presence of up to 17 glomeruli, of which 8 (47%) showed total sclerosis, and 3 (18%) showed segmental sclerosis. The glomerular basement membrane had a normal thickness with relatively smooth contours and without electron-dense deposits. The podocyte foot processes were widely effaced. The tubules had marked focal atrophy with mononuclear cell infiltration and fibrosis in the interstitium. Hyaline arteriolosclerosis and fibrointimal thickening of small arteries were also observed. Immunofluorescence microscopy showed no immunocomplex or autoantibody deposition. Overall, a pathological diagnosis of moderately advanced FSGS was made (Figure 1 A and B).

The patient’s deceased older brother had ESRD and a 36-year-old son too has end-stage renal failure (ESRD). His son was diagnosed with FSGS at the age of 18 and is currently on chronic haemodialysis (Figure 1 C). Based on family history, genetic analysis on the patient and his family...
members was performed. This study was approved by the IRB of CHA Bundang Medical Centre and the patient and his son gave informed written consent. Whole-exome sequencing was performed using SureSelect Human All Exon V6 (Agilent, Santa Clara, CA, USA) and sequencing was performed using the NovaSeq platform (Illumina, San Diego, USA). The mean depth of coverage was 100× (>10×=99.2%). The pathogenicity of each variant was evaluated according to the recommendations of the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology guidelines. The heterozygous variant of WT1 (NM_024426.4) c.1373G>A (p.Arg458Gln) missense, was detected in the patient and his son. This was previously reported to be associated with FSGS and nephrotic syndrome. Moreover, the variant is absent in the gnomAD v2.1.1 dataset and functional studies provide strong evidence that it has a damaging effect on the gene or gene product with in silico tools. Therefore, this variant was classified as pathogenic according to the ACMG guidelines.

Angiotensin receptor blockers and calcium channel blockers (Fimasartan 60mg or Amlodipine 5mg) were prescribed to the patient. During follow-up over one year, his serum creatinine was stable at 1.1–1.3 mg/dL (normal 0.7-1.2 mg/dL), and the urine protein level decreased to 0.362g/g (normal below 0.2g/g).

Discussion

We describe a case of familial FSGS caused by a missense mutation in WT1. Kidney biopsy revealed FSGS with diffuse foot process loss, although the amount of proteinuria and normal serum albumin levels were not consistent with the pathological findings. Genetic testing was performed because of the patient’s family history of ESRD; the WT1 mutation, which appeared to be the cause of podocyte abnormalities, was observed in both the patient and his son. Many inherited forms of FSGS have been identified, and most are caused by mutations in podocytes or glomerular basement membrane proteins. WT1 mutations usually present as the autosomal dominant form of hereditary kidney disease, and its penetrance is nearly 90% with various ages of onset. A WT1 mutation is one of the most common causes of familial FSGS and genetic steroid-resistant nephrotic syndrome (SRNS), and has been reported to cause 10–20% of nonsyndromic genetic FSGS. The possible genetic causes of FSGS are summarised in Table after reviewing OMIM database (https://www.omim.org/).

WT1 is a 50-kb gene with 10 exons on chromosome 11, band p13. WT1 encodes a DNA-binding protein that functions as a transcription factor. Exons 1–6 encode proline-rich regions for the transcriptional regulation of
target genes and homodimerisation of gene products, while exons 7–10 encode a DNA-binding domain consisting of four zinc fingers. In the kidneys, WT1 is required for the development and maintenance of podocytes homeostasis; indeed, several podocyte genes, including NPHS1 (nephrin), NPHS2 (podocin), SYNPO (synaptopodin), and Podxl (Podocalyxin), have been identified as WT1 targets. These genes are important components of the slit diaphragm and cytoskeleton of podocytes and are required for cell viability.

WT1 DNA binding has been suggested to perform both activator and repressor functions, although the exact mechanism remains unknown. 5 Interestingly, podocyte-specific genes have multiple WT1 binding sites, which can epigenetically increase the podocyte-specific gene expression. 5 In addition, WT1 forms a complex along with enhancer proteins to regulate the transcription of target genes. 5 In Adriamycin-induced podocyte injury models, it has been proposed that multiple WT1 DNA binding recruits a series of transcription factors and enhancers to induce a repair response at an early stage. 5a,5b WT1:c.1371G>A(pArg458Gln), the missense mutation noted in our case, is presumed to cause modification of the zinc finger portion of the WT1 protein, which affects target DNA binding affinity. 8 In the United States, Hall et al first reported the missense mutation (R458Q) in WT1 isoform D in two kindred Northern Europeans with nonsyndromic FSGS. 2 They observed that WT1R458Q overexpression significantly downregulated nephrin and synaptopodin expression, leading to impaired podocyte homeostasis.

Mutations in WT1 cause various pathological conditions of the genitourinary system. 9 The Frasier and Denys-Drash syndromes, associated with WT1 mutation, show abnormal gonadal development and progressive glomerulopathy. 9 Wilm’s tumour and kidney-urinary dysplasia were observed in 40% and 11% of patients with
WT1 mutations, respectively.10 Therefore, additional tests may be needed to rule out extrarenal disease in FSGS patients with suspected WT1 mutation, which may provide appropriate treatment for the patient’s extrarenal disease. Interestingly, the age of onset and the severity of the disease differed between the father and son despite the same mutated gene. It is likely to be caused by an autosomal dominant genetic disease that is well expressed as a heterogeneous phenotype.

Genetic FSGS is known to respond poorly to steroids and other immunosuppressants.11 Therefore, if hereditary FSGS is suspected, immunosuppressive treatment is generally stopped and the treatment is focused on conservative therapies such as Renin-Angiotensin-Aldosterone blockade, optimal blood pressure control, and a low-salt diet. In the present case, the patient maintained kidney function and achieved reduced proteinuria with a Renin-Angiotensin-Aldosterone blocker and antihypertensive treatment. However, in randomised controlled trials, apolipoprotein L1 risk variants have not been reported to affect the response to immunosuppressants in patients with FSGS.11 Further studies on the effects of immunosuppressants in genetic FSGS therapy are needed.

\section*{Conclusion}
Genetic analysis is not contemplated as routine care for adults with FSGS; however, it may help in selecting treatment options, identifying extrarenal symptoms, and family planning. FSGS patients with positive family history and nonsyndromic glomerulonephritides should be evaluated for genetic causes. Despite not being able to identify all genetic causes, next-generation sequencing (NGS) or target gene panels are useful tools for detecting genetic diseases, including hereditary FSGS.

\textbf{Patient’s consent:} Informed consent was taken from the patient prior to manuscript writing.

\textbf{Disclaimer:} None.

\textbf{Conflict of interest:} None.

\textbf{Funding disclosure:} This study was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT). (No. NRF-2021R1A2C1013251 and 2022R1A2C2006713) They played no specific role in this study.

\section*{References}
\begin{enumerate}
\end{enumerate}